10 мая 2023
Опубликованная библиотека из 3 000 двумерных материалов содержит информацию о структуре и свойствах однослойных материалов с точечными дефектами: их применяют для производства солнечных батарей и фотокатализаторов. Расширенный датасет позволит обучать ИИ-алгоритмы, что ускорит и упростит поиск новых кристаллических структур с требуемым набором свойств. Базу данных составили лауреат Нобелевской премии по физике Константин Новосёлов, ректор и сотрудники Университета Иннополис, эксперты Национального университета Сингапура и Высшей школы экономики.
По словам учёных из России и Сингапура, разумный дизайн материалов с заданными свойствами — основная задача современной науки о материалах. Для создания солнечных панелей, фотокатализаторов и биохимических сенсоров требуются двумерные материалы, спроектированные с добавлением примесей и дефектов. Однако такие дизайнерские материалы сложно находить, используя классические методы расчёта с применением квантовой химии. Решение, предложенное исследователями из России и Сингапура, — использовать в проектировании новых материалов методы машинного обучения, для которых в этой работе был опубликован датасет.
Руслан Лукин, руководитель Лаборатории искусственного интеллекта в новых материалах Университета Иннополис: «Чтобы получить материал с определёнными свойствами требуется знание соотношения структуры и свойства дефектов, которые нужно добавить. Это сложная задача, учитывая огромное количество возможных исходных материалов и конфигураций дефектов. Даже если структура с одним дефектом может быть рассчитана с помощью современных DFT-методов в течение нескольких часов, этот результат не будет применим даже к схожим по структуре материалам. Свойства каждого нового дефекта приходится рассчитывать с нуля. Методы машинного обучения позволяют ускорить исследование материалов, а именно в сотни раз сократить число экспериментов и генерировать нужные структуры под заданные свойства».
Для прогнозирования свойств материалов уже существуют вычислительные базы данных, например, Material Projects, OQMD и методы машинного обучения на основе графовых нейросетей типа MEGNet, SchNet и GemNet. Но при их использовании возникают трудности из-за нехватки наборов данных о дефектах и сложности прогнозирования оптимизированных с помощью квантовой химии структур.
Руслан Лукин, руководитель Лаборатории искусственного интеллекта в новых материалах Университета Иннополис: «В предложенной нами платформе наборы данных будут разбиты на две группы: дефекты с низкой и высокой плотностями. В датасете представлены, в основном, дефекты замещения, вакансии и их сочетания. К примеру, среди точечных дефектов с вакансиями в будущем можно будет найти новые материалы для солнечных фотокатализаторов и полупроводников. Благодаря проделанной исследовательской работе мы узнали больше об электронных свойствах дефектов двумерных материалов. Со временем это позволит разработать модели машинного обучения для более точного и эффективного прогнозирования свойств материалов, а регистрация всё большего количества наборов данных о дефектах — масштабировать прогнозирование».
Базу данных с 3 000 посчитанными материалами и 7 000 дефектами с высокой плотностью опубликовал научный журнал Nature 2D Materials в статье «Выявление сложных корреляций структура-свойство дефектов в 2D-материалах на основе скрининга больших наборов данных» (Unveiling the complex structure-property correlation of defects in 2D materials based on high throughput datasets).
13 ноября 2023
Учащиеся 9—11 классов решали задачи в сфере информационной безопасности, разработанные методистами и разработчиками Университета Иннополис. В отборочном этапе участвовали 350 участников из 43 регионов России, в финал вышли 50 человек.
10 ноября 2023
Дмитрий Менделеев мастерил чемоданы, Никола Тесла любил голубей, Альберт Эйнштейн играл на скрипке, Лев Ландау увлекался кино, а Пьер и Мария Кюри путешествовали на велосипедах. Во Всемирный день науки сотрудники российского ИТ-вуза поделились мыслями о том, как их хобби помогают исследовательской работе и наоборот.
10 ноября 2023
Всего в республиканском этапе XXVI Всероссийской командной олимпиады по информатике и программированию соревновались 150 учащихся 6–11 классов. 13 команд из Республики Татарстан будут участвовать в финальном туре 11—12 декабря в Санкт-Петербурге. Университет Иннополис — куратор и площадка проведения олимпиады.